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Exact Analysis of Rectangular Waveguides
Inhomogeneously Filled with a Transversely
- Magnetized Semiconductor

ROBERTO SORRENTINO

Abstract—An exact solution for the complex propagation constant in
semiconductor loaded waveguides is obtained by superimposing a finite
number of plane waves. The analysis is carried out through the study of
the parallel-plate waveguide. Numerical results have been obtained by
means of a numerical program previously set up [18]. Reciprocal and
nonreciprocal behavior of the electromagnetic (EM) structure, depending
on the semiconductor parameters, geometrical parameters, and applied
magnetic field, is illustrated. A good quantitative agreement between the
theory and the experiments in [11] is shown.

I. INTRODUCTION

N RECENT YEARS several investigators have been
concerned with electromagnetic (EM) wave propagation

in rectangular waveguides, either partially or totally filled
with a semiconductor, sometimes transversely magnetized.
Reciprocal propagation in rectangular waveguides totally
filled with a transversely magnetized semiconductor has been
studied by Engineer and Nag [1] in the limiting case of a
small applied magnetic field: their conclusions have been
confirmed by Rahman and Gunn [2]. A perturbation tech-
nique [3] has been used by Gabriel and Brodwin to obtain
a first-order approximation for the waveguide totally filled
with a transversely magnetized semiconductor [4]. Experi-
.mental studies have been performed by Barlow and Koike
[5] and later by Toda [6]-[8], whose results have been
interpreted theoretically by Hirota [9] by assuming the
semiconductor conductivity very high in the direction of the
applied magnetic field. Hirota and Suzuki [10] have
developed a variational analysis, complete with experi-
mental data, of a rectangular waveguide loaded with a
very thin slab of transversely magnetized semiconductor.
Nonreciprocal propagation in the partially filled waveguide
has been demonstrated by Arnold and Rosenbaum [11]
through an expansion of the field in terms of TE;, and
TM, , empty waveguide modes and the use of Schelkunoff’s
telegraphist’s equations [12]. However, Sheikh and Gunn
[13] on one hand, and Vander Vost and Govaerts [14] on
the other, have pointed out the limits of the approximation
techniques used for this kind of structure. An exact analysis
for solving the rectangular waveguide loaded with any
number of anisotropic slabs has been developed by Gardiol
[15]. Nevertheless, the particular case of the guide loaded
with one slab of a transversely magnetized semiconductor
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can be solved by means of a simpler techniqgue, i.e., by
superimposing a finite number of plane waves. This tech-
nique is substantially equivalent to that of Gardiol, and it
is similar to that developed by Barzilai and Gerosa [16] for
the analogous structure containing magnetized ferrite.

In Section II the characteristic equation for the propaga-
tion constant of the modes is worked out through an
analysis of the parallel-plate waveguide. In Section III the
numerical results obtained by employing the tensor per-
mittivity given by Engineer and Nag{1] are presented and
discussed together with a comparison with the experiments
of Arnold and Rosenbaum [11].

II. THE PARALLEL-PLATE WAVEGUIDE AND THE
RECTANGULAR WAVEGUIDE

For a semiconductor in the presence of a steady magnetic
field B, oriented along the z axis, the complex permittivity
tensor is

g, —é& O
E=¢]¢& g O
0 0 ¢

M

for a time-harmonic dependence of the fields. ¢ is the semi-
conductor permittivity in the absence of the applied magnetic
field. Generally, the elements of z are a function of the signal
frequency and, with the exception of ¢,, also of B,. It is
worth noting that the permittivity tensor presents a sym-
metry with respect to the z axis, so that waves traveling in
the positive and negative z directions have the same phase
velocities [15].

Let us consider the structures in Fig. 1(a) and (b). The
modal solutions of the parallel-plate waveguide enable one,
as we shall see, to construct the modes of the rectangular
waveguide. Assuming the spatial dependence of the fields
in the semiconductor (y > 0) to be exp ( ja)\/ uen - r), the
condition that homogeneous Maxwell equations possess
nontrivial solutions leads to the dispersion relation

n* + (e5fe; — Dn2n? — (85 + egn”

— (&2 = &gt + e840 =0 ()
where
nw=nn=n?+n?+n’
B = (8.7 + &5°)/ey.
The expressions of the EM field, which can be deduced from
Maxwell’s equations, are, not considering an arbitrary
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Fig. 1. Geometry of the parallel-plate and rectangular waveguides.
factor, - while, in the vacuum, (5) has two roots for k,:
E = & (eeee — 1% ~ 1,8y — W2)n + e3n,50 X 1 Tk,
HH = —e,(ege — 1)1 X 2o + ean (o — nizg) () Therefore, in accordance with [17], we may write

where # = N ;L_/_a_
In a vacuum (y < 0), the normalized wave vector will
be

k = nxy + k,yo + n,2.
-From Mazxwell’s equations it follows that a generic EM

field in the vacuum can be expressed as a combination of
the two fields

e, = n(nk — k?x)
nhy; = Egnzk X X (4a)
e
e2 = k X xo
nhy = £ (k2xo — n.k) (4b)
Ho
with
k=k-k = poso/pe. %)

In (4a) and (4b) spatial dependence exp ( jco\/ uek < r) is
understood. The field (4a) vanishes for n, = 0, as it must
when the parallel-plate guide is closed by two perfectly
conducting planes in such a way as to obtain the rectangular
waveguide. .

For each couple n,,n,, (2) gives four values of n,:

inyl * ny2

! These expressions fail if either #, = 0 or n, = *jn,; in these
cases the right-hand sides of (3) vanish. For the sake of brevity we
omit the expressions to be adopted in these cases instead of (3).

1) EM field in the semiconductor (y > 0):

E 2 E_+ . J—
{H} = [;1 Ai+ {Hl+} €Xp (]a)\/ua n)'iy)
_(E~
v (B

i

| o )]

- exp [jovue(nx + n,2)] (6)

where E;*,H,* are obtained from (3) by putting n, = +n,;.
2) EM field in the vacuum (y < 0):

{5} - Lg B, {,e,z:} exp (jo/ e ky )

e

+ B;~ {h::} exp (~jo/ pe ky)’)]

- exp [jovue(nx + n,z)] Q)

where e;%,h;* are obtained from (4a) and (4b) by putting
k, = tk, The boundary conditions at y = —b, and
y = b, and the interface condition at y = 0 lead to a
homogeneous system of eight algebraic equations in the
eight unknowns 4,%,B;*. The condition for the existence
of a nontrivial solution leads to the characteristic equation
of the structure.

"Let us now consider the rectangular waveguide. It can be
seen from (3) and (4) that the boundary conditions at
z = +af2 are satisfied by the superimposition of two
parallel-plate guide modes having the same amplitude and
opposite phase velocities in the z direction and with

mr 1
n, = —

a ovpe

m=123,"--. ®)
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The case m = 0 (thus n, = 0) is of no interest in the present
study. In this case, in fact, the structure only supports TE
modes which are independent of the applied magnetic
field: the semiconductor behaves as an isotropic medium
with complex permittivity ¢,. The values of the longitudinal
propagation constant may therefore be obtained from the
parallel-plate case with condition (8). The characteristic
equation of the structure may be written, after some
manipulations,

0 0 0 0 Bt
o 9_ L _0 0 0 0
E Exl * Exl - Ex2 * Ex2 - :nz(kyz + nzz)
! Ezl * Ezl - Ez2 * Ezz - : - nzznx
t Byt EyTaym Eptayt EpTopT 0
- = i
1 Balo’ EnTey T Eptwt EpToT 1 O
'IHxl "Hxl onZ ”sz 0
- - &
’IHzl "Hzl 11H22+ 'lez ;0 kynz
where

0 = exp (tjovpe nyb),  B* = exp (Fjow/us kybo).

The characteristic equation of the completely filled guide is
obtained by taking the determinant inside the dashed line
as zero. In this case the propagation is reciprocal: it is not
difficult to see that this determinant does not change value
by altering the sign of n,.

For each value of m, (2) and (5) allow one to express #,,
and k, as functions of n,; therefore through (3), (9) is
reduced to an equation in the only unknown n,:

fn) = 0.

This function is a two-valued analytical one since its argu-
ment is determined apart from any consideration of =.
This fact occurs since the functions n,(n,) and k,(n,),
implicitly defined by (2) and (5), are two valued. In search-
ing for the solutions of (10), suitable precautions should
therefore be adopted because of the existence of the branch
points. These critical points correspond, in Gardiol’s
analysis, to the values of y for which the matrix [A] has
a null eigenvalue of multiplicity two.

(10)

III. RESULTS

When microwave frequency is much lower than carrier
collision frequency, the form of the complex permittivity
tensor given by Engineer and Nag [1] may be adopted:

. g
g =1-—
! / we[1 + (6RB,)?]
g, =1 — jolwe
2
& 0“RB, (11

=/ o[l + (GRByY]
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where R is the Hall constant of the semiconductor and ¢ is
the dc conductivity.

For this case the normalized propagation constant », of
the modes of order m = 1 has been calculated. The X-band
waveguide dimensions have been assumed (¢ = 22.86 mm,
b = by, + b, = 10.16 mm).

The solutions of (10) have been sought by means of a
numerical program [18] based on the well-known formula
valid for an analytical function:

B 0 0
0 k,p* ~k,f~
nk,? + n?) 0 0
n2n, k, —k,
0 0 0
0 0 0 =0 0
0 —E k2 + 0 2R+
Ho Lo
Zfo kn, £ nn, L nn,
& Ho Ho
Z ZiN = _1_ § ZN f (Z ) dz
i 27 J sop f(2)

z, being the zeros of f(z) inside the domain D of the complex
plane z. This method presents the advantage of allowing the
determination of the zeros without having to evaluate the
function in their proximity. This results in a very high
precision which, in some cases, appears to be necessary.
Fig. 2(a) and (b) shows the distribution of the zeros of
f(n,) for two values of the filling ratio b,/b. The zeros are
approximately symmetrical with respect to the origin: this
means that the wave propagation is approximately recipro-
cal for the parameter values indicated in Fig. 2. Most of the
zeros are close to the imaginary axis, which shows that
most of the modes are strongly attenuated. This is not
surprising because, in the empty waveguide, only the
fundamental can propagate at the frequency of 10 GHz.
Nevertheless, as the filling ratio increases, two pairs of
zeros approach the real axis. This behavior is clarified in
Fig. 3 where the normalized phase constant (real part of
n,) and attenuation constant (imaginary part) of the first
six modes (three positively and three negatively traveling)
are reported versus b /b. It is worth noting that the atten-
uation does not vary monotonically with the filling ratio.
This behavior, which also occurs in waveguides partially
filled with a lossy dielectric, has already been noticed by
[11] and interpreted by Gardiol and Parriaux [19] as due
to a large concentration of the electric field within the
dissipative medium. The following effect is also due to the
variable concentration of the electric field in the slab. The
modes a and d, corresponding to the fundamental for
b /b = 0, present a lower attenuation than the others as
long as b/b < ~0.45; for values of the filling ratio between
~0.45 and ~0.90 it is the modes ¢ and f which have the
lowest attenuation. Let us finally note that the values of the
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Fig. 2. Distribution of the zeros of f(»,) in the complex plane 7, for
bs/b = 0.25 and b,/b = 0.60.
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Fig. 3. Normalized phase constants and attenuation constants of the first six modes versus the filling ratio.

propagation constant of the modes are exactly opposite Myre | = +0.338 Mere, = Merm,, = £ j0.567
only for b,/b = 0 and for b,/b = 1, i.e., in the cases of the

empty and totally filled waveguide. When the thickness b, at the frequency of 10 GHz.

of the slab tends to zero, the six modes tend to the TE,,, In Fig. 4 the first six modes (i.e., those with the lowest
TE,{, TM, modes of the emptyswaveguide, for which attenuation) are still considered, but for different values
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Fig. 4. The same as Fig. 3 except for f = 9 GHz and 6RB, = 0.9.

of the signal frequency and, particularly, of ¢RB,. In this
case the propagation appears to be completely non-
reciprocal, in accordance with the fact that the off-diagonal
elements of the tensor permittivity are greater than in the
preceding case. In fact, for a fixed o/ws, (11) shows that &,
reaches its maximum value for cRB, = 1. It is interesting
to note that the mode b propagates in the positive x direction
for b/b < 0.3, while, for greater values of the filling ratio,
it propagates with a negative phase velocity. On the con-
trary, this mode is always attenuated in the negative x
direction. The calculation of the group velocity, however,
shows that it remains negative for all values of 4,/b: for
b,/b < 0.3 we are therefore dealing with a backward wave
[20].

In Fig. 5 the real and imaginary parts of n, are reported
versus the frequency in the range 5-35 GHz and for b,/b =
0.5. One can note that at lower frequencies, i.e., for greater
a/we, the nonreciprocal behavior of the structure becomes
relevant. On the contrary, as the frequency increases, the
semiconductor tends to behave as an isotropic medium and
the propagation tends to be reciprocal: this is consistent
with the fact that, for @ — oo, (11) becomes

g =& =1

83 = 0.
The most remarkable effect in Fig. 5 is that the normalized
phase constant of the mode f undergoes a change of the
slope at about 8 GHz. The calculation of the group velocity

shows that it is actually directed like the phase velocity,
i.e., in the positive x direction, for f > ~7.5 GHz; instead,

below this frequency it is opposite to the phase velocity.
In this case also, below ~ 7.5 GHz, we are therefore dealing
with a backward wave.

Fig. 6 shows n, of the first six modes as a function of
RB,. When RB; = 0 one obtains the modes of the wave-
guide loaded with a lossy dielectric with complex permit-
tivity &,. The action of the magnetic field results in a reduced
attenuation of the modes @ and d. These modes, which
correspond to the fundamental in the empty waveguide
(see Fig. 4), present a greater attenuation than the modes
¢ and f, respectively, for RB, < ~0.6. On the contrary,
their attenuation decreases with increasing magnetic field.
In fact, it is easily seen that the conduction current, by
increasing B,, tends to be oriented in the z direction:
consequently, the conduction losses 1E < J* decrease for
the modes which have a smaller z component of the electric
field and which, therefore, are particularly influenced by the
value of the steady magnetic field. It is derived that a TE,
mode of the empty waveguide will preferably excite the
modes a or d, depending on the direction of propagation
and/or on the sign of B,. This observation will be useful in
the following.

For small values of RB, one can note from Fig. 6 that
the attenuation increases with increasing magnetic field for
the negatively traveling mode a, and decreases for the mode
d which propagates in the opposite direction. This is con-
sistent with the experimental results presented in [5] and
[11].

Fig. 7 shows a comparison between the present theory
(continuous line) and the experiments of Arnold and
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Rosenbaum [11]. They have measured the phase shift due
to the applied magnetic field in a waveguide section of length
6.5 mm partially loaded with n-type silicon. An EM field
coming from a waveguide totally filled with a lossless
dielectric was launched into the semiconductor loaded
waveguide. Particular precautions have been adopted to
avoid multimode propagation. The dashed line represents
their theoretical results. An exact solution of the problem
of the incidence of an EM field on the semiconductor loaded
waveguide would require the matching of the incident field
with a superposition of the modes of the loaded waveguide.
This observation may suggest a qualitative explanation of
the imperfect agreement between our theoretical results
and the experimental ones. The former, in fact, have been
obtained under the assumption of the propagation of one
single mode. Let us consider Fig. 8, where the values of
n, of the first modes are reported in the case By = 0. As
one could see, the modes a and d are the only ones which
are appreciably influenced by the magnetic field and whose
attenuation decreases for high values of B,. Consequently,
as far as we have seen with regard to Fig. 6, the modes a
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and d were preferably excited in the experiments. We have
therefore obtained the theoretical results in Fig. 7 under the
assumption of the propagation of the modes a or d; never-
theless, in the experiment the other modes could have been
slightly excited. This explanation is consistent with the
fact that the disagreement is relatively the same for both
positively and negatively traveling waves. On the contrary,
the theoretical results of Arnold and Rosenbaum agree
very well with the measurements in the case of the negatively
traveling wave, but they are erratic for the positively travel-
ing one. This is clearly due to the approximation of their
theory.

IV. CONCLUSIONS

The characteristic equation of the rectangular waveguide
partially loaded with a transversely magnetized semi-
conductor has been derived and solved by means of a
computer program previously set up [18]. This has been
done by assuming the expression of the semiconductor
permittivity given by Engineer and Nag [1], but other
models could be adopted (e.g., the Drude-Zener model
[21D.

The nonreciprocal properties of the structure have been
illustrated in various cases, namely by varying the filling
ratio, the frequency, and the applied magnetic field. Non-
reciprocal propagation has been particularly shown for the
values of 6RB,, close to unity. For high frequencies and/or
for low conductivities the propagation tends to be recipro-
cal. The behavior of the attenuation for small values of the
magnetic field is consistent with the experimental results
presented in [5] and [11]. A good agreement of the theory
and the experiments in [11] has been shown through a
quantitative comparison between them.
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On a Direct Use of Edge Condition in Modal Analysis
C. VASSALLO

Abstract—The edge condition allows us to know the asymptotic
decrease of modal amplitudes in some discontinuity problems in wave-
guides. One may take a direct account of this information in modal
analysis and gain a significant improvement of the calculation when the
field singularity at edge is important. The accuracy and the validity of
this method are studied in two cases: the diaphragm and the junction
between an empty waveguide and a partially dielectric-filled waveguide.

INTRODUCTION

The modal analysis is appropriate for all the waveguide
discontinuities contained in a single cross-section plane, i.e., dis-
continuities like irises or abrupt transitions from one kind of
guide to another one [1]. Its formulation is very easy, and modern
computers can cope with the high-rank linear systems which may
result from its application. However, these systems are only the
truncated approximations of the theoretical systems of infinite
rank in a rigorous formulation of the method, and some dif-
ficulties, such as the relative convergence effect, may lead to false
results [2], [3] or a too slow rate of convergence may lead to
inaccurate results. In this work we present a method based upon
the edge effect theory, which may improve the convergence. We
shall present our method in Section I, then we shall study its
application to different kinds of discontinuities in order to know
its range of interest.

Manuscript received February 14, 1975; revised November 10, 1975.
The author is with the Centre Nationale d’Etudes des Télécommunica-
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I. MopAL ANALYSIS AND EDGE EFFECT

Let us consider an abrupt transition between a left waveguide
the kth normal mode of which has transverse components
(e, ,h.), and a right waveguide the pth normal mode of which has
transverse components (e, ”,4,”). The equations which describe
the scattering of the nth left normal mode on the transition have
the following form:

; (‘;kn + Rk)ek’(xy y) = Z Tpep"(xs y)
P

; ((skn - Rk)hk'(x’ y) = Z Tph"(x) y)

1
)

where the unknown coefficients are (Ry) and (7,) (k,p =

2,-++). By taking the cross product of the two sides of these
equations with the functigns of any set complete on the cross
section, one obtains an equivalent infinite algebraic linear system.
For instance, with the set {e,”} one may transform (1) into

o
= kle (akn -+ Rk)Vpk (P 1729 " 'aw) (3)
where the V), are defined by integrals on the mode components.
Equation (2) is transformed in a similar way.

The practical resolution consists of retaining a finite number of
unknown modal coefficients. For instance, system (3) is replaced

by

N
T, = kz—;l (Orn + RV, (p = 12,---.P) 0))

and the integers N and P are chosen in order to have as many
equations as unknown coefficients. Then, one has an ordinary
linear system.



