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ROBERTO SORRENTINO

Abstract—An exact solution for the complex propagation constant in
semiconductor loaded waveguides is obtained by superimposing a finite
number of plane waves. The analysis is carried out throngh the study of
the parallel-plate waveguide. Numerical resnlts have been obtained by
means of a numerical program previously set up [18]. Reciprocal and
nonreciprocal behavior of the electromagnetic (EM) structure, depending

on the semiconductor parameters, geometrical parameters, and applied

magnetic field, is illustrated. A good quantitative agreement between the

theory and the experiments in [11] is shown.

I. INTRODUCTION

I N RECENT YEARS several investigators have been

concerned with electromagnetic (EM) wave propagation

in rectangular waveguides, either partially or totally filled

with a semiconductor, sometimes transversely magnetized,

Reciprocal propagation in rectangular waveguides totally

filled with a transversely magnetized semiconductor has been

studied by Engineer and Nag [1] in the limiting case of a

small applied magnetic field: their conclusions have been

confirmed by Rahman and Gunn [z]. A perturbation tech-

nique [3] has been used by Gabriel and Brodwin to obtain

a first-order approximation for the waveguide totally filled

with a transversely magnetized semiconductor [4]. Experi-

mental studies have been performed by Barlow and Koike

[5] and later by Toda [6]-[8], whose results have been

interpreted theoretically by Hirota [9] by assuming the

semiconductor conductivity very high in the direction of the

applied magnetic field. Hirota and Suzuki [10] have

developed a variational analysis, complete with experi-

mental data, of a rectangular waveguide loaded with a

very thin slab of transversely magnetized semiconductor.

Nonreciprocal propagation in the partially filled waveguide

has been demonstrated by Arnold and Rosenbaum [11]

through an expansion of the field in terms of TEIO and

TMI ~ empty waveguide modes and the use of Schelkunoff’s

telegraphist’s equations [12]. However, Sheikh and Chum

[13] on one hand, and Vander Vest and Govaerts [14] on

the other, have pointed out the limits of the approximation

techniques used for this kind of structure. An exact analysis

for solving the rectangular waveguide loaded with any

number of anisotropic slabs has been developed by Gardiol

[15]. Nevertheless, the particular case of the guide loaded
with one slab of a transversely magnetized semiconductor
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can be solved by means of a simpler technique, i.e., by

superimposing a finite number of plane waves. This tech-

nique is substantially equivalent to that of Gardiol, and it

is similar to that developed by Barzilai and Gerosa [16] for

the analogous structure containing magnetized ferrite.

In Section II the characteristic equation for the propaga-

tion constant of the modes is worked out through an

analysis of the parallel-plate waveguide. In Section III the

numerical results obtained by employing the tensor per-

mittivit y given by Engineer and Nag [1 ] are presented and

discussed together with a comparison with the experiments

of Arnold and Rosenbaum [11].

II. THE PARALLEL-PLATE WAVEGUIDE AND THE

RECTANGULAR WAVEGUIDE

For a semiconductor in the presence of a steady magnetic

field 130 oriented along the z axis, the complex permittivity

tensor is

[1

El —83 o
E= &&~&~o (1)

o 0 e~

for a time-harmonic dependence of the fields. & is the semi-

conductor permittivit y in the absence of the applied magnetic

field. Generally, the elements of i are a function of the signal

frequency and, with the exception of ez, also of l?o. It is

worth noting that the permittivity tensor presents a sym-

metry with respect to the z axis, so that waves traveling in

the positive and negative z directions have the same phase

velocities [15].

Let us consider the structures in Fig. l(a) zmd (b). The

modal solutions of the parallel-plate waveguide enable one,

as we shall see, to construct the modes of the rectangular

waveguide. Assuming the spatial dependence of the fields—
in the semiconductor (y > O) to be exp (jo~pm. r), the

condition that homogeneous Maxwell equations possess

nontrivial solutions leads to the dispersion relation

n4 + (ez/&l – l)nz2n2 – (e2 + e.ff)nz

– (E2 - &eff)nz2+ E#{,~~ = O (2)

where

n2=n. n=nX2+nY2+nz2

&eff = (812+ 833/&l.

The expressions of the EM field, which can be deduced from

Maxwell’s equations, are, not considering am arbitrary



202 ISSE TRANSACTIONS ON MICROWAVE THSORY ANo TECHNIQUES, APRIL 1976

i

b
b

b

(a)

lY

Eb,

b

b.

(b)

Fig. 1. Geolnet~ of the parallel-plate and rectangular waveguides.

factor,

E = &l(&,ff – n2)Zo – nZ(&l – nz)n + &@Z?ZoX n

qH = – ‘l(&eff — nz)n x z~ + &3nz(nzn - n%o)

where ~ = ~~

In a vacuum (y < O), the normalized wave vector

be

k = nxxp -1- kyyo + nzz~.

From Maxwell’s equations it follows that a generic

field in the vacuum can be expressed as a combination of

the two fields

el = nz(n# – IC2XO)

e2=kxxo

qh2 = ~ (kzXo – n~)

with

k = k . k = poeo/pe.

(3)’

will

EM

(4a)

(4b)

(5)

In (4a) and (4b) spatial dependence exp (jod~k or) is

understood. The field (4a) van@hes for n= = O, as it must

when the parallel-plate guide is closed by two perfectly

conducting planes in such a way as to obtain the rectangular

waveguide.

For each couple nX,nZ, (2) gives four values of nY:

1 These expressions fail if either n. = O or ny = f jn.; in these
cases the right-hand sides of (3) vanish. For the sake of brevity we
omit the expressions to be adopted in these “cases instead of (3).

while, in the vacuum, (5) has two roots for kY:

“+ kY.

Therefore, in accordance with [17], we may write

1) EM field in the semiconductor (y > O):

exp [joi~(nXx + fzZz)] (6)

where Ei* ,Hi * are obtained from (3) by putting n, = f nYi.

2) EM field in the vacuum (y < O):

(:)=[iilBi+ (i:lexp(’oJ=kyy
{)+B,- ei-

h,. exp (–jco/~ kyy)
1 1

exp [jcoJ~(nXx + nZz)] (7)

where ei f ,hi * are obtained from (4a) and (4b) by putting

k, = i kY. The boundary conditions at y = – b. and

y = b. and the interface condition at y = O lead to a

homogeneous system of eight algebraic equations in the
i B,*. The condition for the existenceeight unknowns A, ,

of a“ nontrivial solution leads to the characteristic equation

of the structure.

Let us now consider the rectangular waveguide. It can be

seen from (3) and (4) that the boundary conditions at

z = t a/2 are satisfied by the superimposition of two

parallel.plate guide modes having the same amplitude and

opposite phase velocities in the z direction and with,,

nz=~—,
a .;G

m = 1,2,3,..”. (8)
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The case m = O(thus nZ = O) is of no interest in the present

study. In this case, in fact, the structure only supports TE

modes which are independent of the applied magnetic

field: the semiconductor behaves as an isotropic medium

with complex permittivit y E2. The values of the longitudinal

propagation constant may therefore be obtained from the

parallel-plate case with condition (8). The characteristic

equation of the structure may be written, after some

manipulations,

where R is the Hall constant of the semiconductor and a is

the dc conductivity.

For this case the normalized propagation constant nX of

the modes of order m = 1 has been calculated. The X-band

waveguide dimensions have been assumed (a = 22.86 mm,

b = bO + b. = 10.16 mm).

The solutions of (10) have been sought by means of a

numerical program [18] based on the well-known formula

valid for an analytical function:

@%I+

I vHzl +

o 0 0 b+
o 0 0 0,----- ------ ________ ---=

Exl - EX2+ Ex2- :nz(kyz + nzz)
Ezl - E=,+ E=,- r –nzznx

Exl-cq - Ex2+cq+ Ex2-rx2- ~ O
Ezl-(xl - E.2+CX2+ E 2-ct2- , 0------ ------ _----z--- --=

v% - IIK2+ tIHx2 - 0

vHzI - Wz2+ vHz2 - ~ kynz
E

\-

nZ(ky2 + nZ2)

—nz=nx

o
0

0

o
ky~+

o
k,
o
0

– ~ (ky2 + nz2)
/Jo

P— nznx
PO

o

- ky~-

0
– k,

o
0 = o (9)

nzl.)

where

~ b) l?’ = exp (Tjdz kybo).
* = exp (~ja /-J&‘w s ‘Ui

The characteristic equation of the completely filled guide is

obtained by taking the determinant inside the dashed line

as zero. In this case the propagation is reciprocal: it is not

difficult to see that this determinant does not change value

by altering the sign of nX.

For each value of m, (2) and (5) allow one to express nYi

and ky as functions of nx; therefore through (3), (9) is
reduced to an equation in the only unknown nx:

f(nx) = O. (lo)

This function is a two-valued analytical one since its argu-

ment is determined apart from any consideration of n.

This fact occurs since the functions nyi(nX) and ky(nx),
implicitly deiined by (2) and (5), are two valued. In search-

ing for the solutions of (10), suitable precautions should

therefore be adopted because of the existence of the branch

points. These critical points correspond, in Gardiol’s

analysis, to the values of y for which the matrix [A] has

a null eigenvalue of multiplicity two.

111. RESULTS

When microwave frequency is much lower than carrier

collision frequency, the form of the complex permittivity

tensor given by Engineer and Nag [1] may be adopted:

CT
.31= l-j

coe[l + (crRB,o)2]

e2 = 1 – jcr/ox

02RB0
(11)

‘3 = J cm[l + (oRBO)2]

zi being the zeros off(z) inside the domain D of the complex

plane z. This method presents the advantage of allowing the

determination of the zeros without having to evaluate the

function in their proximity. This results in a very high

precision which, in some cases, appears to be necessary.

Fig. 2(a) and (b) shows the distribution oft he zeros of

f (nx) for two values of the filling ratio bJb. The zeros are

approximately symmetrical with respect to the origin: this

means that the wave propagation is approximately recipro-

cal for the parameter values indicated in Fig. 2. Most of the

zeros are close to the imaginary axis, which shows that

most of the modes are strongly attenuated. This is not

surprising because, in the empty waveguide, only the

fundamental can propagate at the frequency of 10 GHz.

Nevertheless, as the filling ratio increases, two pairs of

zeros approach the real axis. This behavior is clarified in

Fig. 3 where the normalized phase constant (real part of

nX) and attenuation constant (imaginary part) of the first

six modes (three positively and three negatively traveling)

are reported versus bJb. It is worth noting that the atten-

uation does not vary monotonically with the filling ratio.

This behavior, which also occurs in waveguides partially

filled with a 10SSYdielectric, has already been noticed by

[11] and interpreted by Gardiol and Parriaux [19] as due

to a large concentration of the electric field within the

dissipative medium. The following effect is also due to the
variable concentration of the electric field in the slab. The

modes a and d, corresponding to the fundamental for

b,/b = O, present a lower attenuaticm than the others as

long as bJb < wO.45; for values of the filling ratio between

-0.45 and N 0.90 it is the modes c and f which have the

lowest attenuation. Let us finally note that the values of the
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Fig. 3. Normalized phase constants andattenuation constmts of the first sixmodes versus the filling ratio.

propagation constant of the modes are exactly opposite nxT~,~ = +0.338 ‘xTE ,, = /lxTM = ~jO.567
only forbJb = O and for b,/b = 1, i.e., in the cases of the

11

empty and totally filled waveguide. When the thickness b. at the frequency of 10 GHz.

of the slab tends to zero, the six modes tend to the TE1 ~, In Fig. 4 the first six modes (i.e., those with the lowest

TE1 ~, TM1 ~ modes of the empty.waveguide, for which attenuation) are still considered, but for different values
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Fig. 4. The same as Fig. 3 except for J = 9 GHz and URBO = 0.9.

of the signal frequency and, particularly, of aRBo, In this

case the propagation appears to be completely non-

reciprocal, in accordance with the fact that the off-diagonal

elements of the tensor permittivity are greater than in the

preceding case. In fact, for a fixed a/oe, (11) shows that 83

reaches its maximum value for aRBo = 1. It is interesting

to note that the mode b propagates in the positive x direction

for bJb <0.3, while, for greater values of the filling ratio,

it propagates with a negative phase velocity. On the con-

trary, this mode is always attenuated in the negative x

direction. The calculation of the group velocity, however,

shows that it remains negative for all values of bJb: for

bJb <0.3 we are therefore dealing with a backward wave

[20].
In Fig. 5 the real and imaginary parts of nX are reported

versus the frequency in the range 5–35 GHz and for b,/b =
0.5. One can note that at lower frequencies, i.e., for greater

a/ox, the nonreciprocal behavior of the structure becomes

relevant. On the contrary, as the frequency increases, the

semiconductor tends to behave as an isotropic medium and

the propagation tends to be reciprocal: this is consistent

with the fact that, for co + co, (11) becomes

&~ =ez=l

es = O.

The most remarkable effect in Fig. 5 is that the normalized

phase constant of the mode f undergoes a change of the

slope at about 8 GHz. The calculation of the group velocity

shows that it is actually directed like the phase velocity,
i.e., in the positive x direction, for f > =7.5 GHz; instead,

below this frequency it is opposite to the phase velocity.

In this case als~, below N 7.5-GHz, we are therefore dealirig

with a backward wave.

Fig. 6 shows n. of the first six modes as a function of

RBO. When RBO = O one obtains the modes of the wave-

guide loaded with a 10SSYdielectric with complex permit-

tivity 82. The action of the magnetic field results in a reduced

attenuation of the modes a and d, These modes, which

correspond to the fundamental in the empty waveguide

(see Fig, 4), present a greater attenuation than. the modes

c and f, respectively, for RBO < =0.6. On the contrary,

their attenuation decreases with increasing magnetic field.

In fact, it is easily seen that the conduction current, by

increasing BO, tends to be oriented in the z direction:

consequently, the conduction losses 4E oJ* decrease for

the modes which have a smaller z component of the electric

field and which, therefore, are particularly influenced by the

value of the steady magnetic field. It is derived that a TEIO

mode of the empty waveguide will preferably excite the

modes a or d, depending on the direction of propagation

and/or on the sign of Bo. This observation will be useful in

the following.

For small values of RBO one can note from Fig. 6 that

the attenuation increases with increasing magntitic field for
the negatively traveling mode a, and decreases for the mode

d which propagates in the opposite direction. ‘This is con-

sistent with the experimental results presented in [5] and

[11].

Fig. 7 shows a comparison between the present theory

(continuous line) and the experiments of Arnold and
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Rosenbaum [11]. They have measured the phase shift due

to the applied magnetic field in a waveguide section of length

6.5 mm partially loaded with n-type silicon. An EM field

coming from a waveguide totally filled with a lossless

dielectric was launched into the semiconductor loaded

waveguide. Particular precautions have been adopted to

avoid multimode propagation. The dashed line represents

their theoretical results. An exact solution of the problem

of the incidence of an EM field on the semiconductor loaded

waveguide would require the matching of the incident field

with a superposition of the modes of the loaded waveguide.

This observation may suggest a qualitative explanation of

the imperfect agreement between our theoretical results

and the experimental ones. The former, in fact, have been

obtained under the assumption of the propagation of one

single mode. Let us consider Fig, 8, where the values of
nX of the first modes are reported in the case llo = O. As

one could see, the modes a and d are the only ones which

are appreciably influenced by the magnetic field and whose

attenuation decreases for high values of BO. Consequently,

as far as we have seen with regard to Fig. 6, the modes a

207

and d were preferably excited in the experiments, We have

therefore obtained the theoretical results in Fig. ‘1 under the

assumption of the propagation of the modes a or d; never-

theless, in the experiment the other modes could have been

slightly excited. This explanation is consistent with the

fact that the disagreement is relatively the same for both

positively and negatively traveling waves. On the contrary,

the theoretical results of Arnold and Rosenbaum agree

very well with the measurements in the case of the negatively

traveling wave, but they are erratic for the positively travel-

ing one. This ‘is clearly due to the approximation of their

theory.

IV. CONCLUSIONS

The characteristic equation of the rectangular waveguide

partially loaded with a transversely magnetized semi-

conductor has been derived and solved by means of a
computer program previously set up [18]. This has been

done by assuming the expression of the semiconductor

permittivity given by Engineer and Nag [1], but other

models could be adopted (e.g., the Drude–Zener model

[21]).

The nonreciprocal properties of the structure have been

illustrated in various cases, namely by varying the filling

ratio, the frequency, and the applied magnetic ~eld. Non-

reciprocal propagation has been particularly shown for the

values of ORBOclose to unity. For high frequencies and/or

for low conductivities the propagation tends to be recipro-

cal. The behavior of the attenuation for small values of the

magnetic field is consistent with the experimental results

presented in [5] and [11]. A good agreement of the theory

and the experiments in [11] has been shown through a

quantitative comparison between them:
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Short Papers

On a Direct Use of Edge Condition in Modal Analysis

C. VASSALLO

~bstract—The edge condition allows ns to know the asymptotic
decrease of modal amplitudes in some discontinuity problems in wave-

goides. One may take a direct account of this information in modal
analysis and gain a significant improvement of the calculation when tbe
field singularity at edge is important. The accuracy and the validity of

this method are studied in two cases: the diaphragm and tbe junction

between an empty waveguide and a partially dielectric-filled wavegaide.

INTRODUCTION

The modal analysis is appropriate for all the waveguide

discontinuities contained in a single cross-section plane, i.e., dis-

continuities like irises or abrupt transitions from one kind of

guide to another one [1]. Its formulation is very easy, and modern

computers can cope with the high-rank linear systems which may

result from its application. However, these systems are only the

truncated approximations of the theoretical systems of infinite

rank in a rigorous formulation of the method, and some dif-

ficulties, such as the relative convergence effect, may lead to false

results [2], [3] or a too slow rate of convergence may lead to

inaccurate results. In this work we present a method based upon
the edge effect theory, which may improve the convergence. We
shall present our method in Section I, then we shall study its
application to different kinds of discontinuities in order to know
its range of interest.
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1. IVIODAL ANALYSIS AND EDGE EFFECT

Let us consider an abrupt transition between a left waveguide

the kth normal mode of which has transverse components

(ek’,h~), and a right waveguide thepth normal mode of which has

transverse components (eP “,hP”). The equations which describe

the scattering of the nth left normal mode on the transition have

the following form:

~ (6,. + R.)e,’(x, Y) = ~ Tpep’’(x, Y) (1)

; (h - &)h’(X,y) = ~ ~P~(X,Y) (2)
P

where the unknown coefficients are (R~) and (Tp) (k,p =

1,2,.. .). By taking the cross product of the two sides of these

equations with the functiqns of any set complete on the cross

section, one obtains an equivalent infinite algebraic linear system.

For instance, with the set {eP”} one may transform (1) into

a,

TP = ~, (dkn + Rk)Vp~,’ (p = 1,2,. ... m) (3)
k=l

where the VP~are defined by integrals on the mode components.

Equation (2) is transformed in a similar way.

The practical resolution consists of retaining a finite number of

unknown modal coefficients. For instance, system (3) is replaced

by
Ar

Tp = Y, (~k. + Rk) ‘Pk, (p = 1,2,.. .,P) (4)
k=l

and the integers N and ~ are chosen in order to have as many

equations as urtlcnown coefficients. Then, one has an ordinary

linear system.


